Generalized Primitive Elements of a Free Group

نویسنده

  • Vladimir Shpilrain
چکیده

We study endomorphisms of a free group of finite rank by means of their action on specific sets of elements. In particular, we prove that every endomorphism of the free group of rank 2 which preserves an automorphic orbit (i.e., acts “like an automorphism” on one particular orbit), is itself an automorphism. Then, we consider elements of a different nature, defined by means of homological properties of the corresponding one-relator group. These elements (“generalized primitive elements”), interesting in their own right, can also be used for distinguishing automorphisms among arbitrary endomorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results on Engel Fuzzy Subgroups

‎In the classical group theory there is‎ an open question‎: ‎Is every torsion free n-Engel group (for n ≥ 4)‎, nilpotent?‎. ‎To answer the question‎, ‎Traustason‎ [11] showed that with some additional conditions all‎ ‎4-Engel groups are locally nilpotent‎. ‎Here‎, ‎we gave some partial‎ answer to this question on Engel fuzzy subgroups‎. ‎We show that if μ is a normal 4-Engel fuzzy‎ subgroup of ...

متن کامل

Counting Primitive Elements in Free Groups

In this paper it is proved that the set of primitive elements of a nonabelian free group has density zero, i.e. the ratio of primitive elements in increasingly large balls is arbitrarily small. Two notions of density (natural and exponential density) are defined and some of their properties are studied. A class of subsets of the free group (graphical sets) is defined restricting the occurrence ...

متن کامل

Test Words, Generic Elements and Almost Primitivity

A test element in a group G is an element g with the property that if f(g) = g for an endomorphism f of G to G then f must be an automorphism. A test element in a free group is called a test word. Nielsen gave the first example of a test word by showing that in the free group on x, y the commutator [x, y] satisfies this property. T. Turner recently characterized test words as those elements of ...

متن کامل

Palindromic Primitives and Palindromic Bases in the Free Group of Rank Two

The present paper records more details of the relationship between primitive elements and palindromes in F2, the free group of rank two. We characterize the conjugacy classes of palindromic primitive elements as those in which cyclically reduced words have odd length. We identify large palindromic subwords of certain primitives in conjugacy classes which contain cyclically reduced words of even...

متن کامل

Algorithmic Constructions and Primitive Elements in the Free Group of Rank 2

The centrepiece of this paper is a normal form for primitive elements which facilitates the use of induction arguments to prove properties of primitive elements. The normal form arises from an elementary algorithm for constructing a primitive element p in F(x, y) with a given exponent sum pair (X, Y ), if such an element p exists. Several results concerning the primitive elements of F(x, y) are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996